source website:

To understand how the work of the us information and holographic laser , converter, in fact the quantum biokomp′ûtera [26], the most useful are the classic dynamic holography u. n.. Denisûka [17]. He developed the basis of holographic display material structures, including dynamic, moving in spacetime (for example, Doppler holography). This is especially important for our theories and their specific devices, Since organisms are the, from the point of view of holography, non-stationary environment. Using the principles of Denisûka, as the theoretical base, We were able to experimentally prove its applicability to the functioning of the Biosystems. This gave impetus to the further development of management theories in biological and physical objects through the use of space-loc. modulation holographic information, carried out in different ways in the biological and physical objects [2-13, 21]. The essence of this phenomenon is based on the hypothesis of the unity wave and material processes, taking place in all closed and open loop systems [18]. Broadcast modulation information from a donor to a recipient who is a straight line extending mutually penetrating waves, supporting multilevel modulâcionnuû information. One of the theoretical justification of the method of holographic biofeedback can serve as a physical-mathematical model, We used to design ways of forming an incoherent biological-dynamic polarization hologram using optical properties of cell nuclei (chromosomes) as ball lenses (quasi lenses), polarization-optical components in the form of liquid crystal-holesterikov DNA. Consider the formalized description of the process, proposed for registration hologram color without the use of lasers [22]. Note the, the chromosomes cannot be literally considered as lasers. With lasers they have only, that they are the sources of coherent radiation. Adapting the formalism [22] the biological system, We describe the leaking intracellular processes. Following that, we present a mathematical substantiation of efficiency of incoherent polarization-amplitude-phase quasi holographic lens and, in this way,, We will explain the nature of the wave control in organisms, in the far zone „. Biosystem in a sense is a complex associates of optically active substances, polarizers, Rotary polarization optical radiation passing through them, and it’s good to know [19,27]. However, the principles of control biogolografičeskogo using polarized light were previously considered only us. Holographic transfer function can be defined, based on Fourier-transform expressions (5). The hologram contains a full three-dimensional spatial characteristics of golografiruemogo information on the object or on the spatial distribution of surface points contributor on a plane registration of hologram recipient. Thus, compare our task is similar to the traditional. However, you can see, the above method is fundamentally different from the known interference methods and gives undeniable advantages. In the first place, along with monohromatičnost′û and kogerentnost′û laser light cell nuclei, as in the situation of endogenous biovolnovyh processes, and when artificial broadcast signal, using dispersive rotational ability of optically active environment and spatial locally-distributed polarization filtering through quasi lens for far zone „. This is quite enough, to the dynamism of the donor as a non-stationary environment, the recipient will see the wave biosignal-donor’s image without distortion. A fundamental property of cellular structures Biosystems be optically active, i.e.. polarize light, probably related to, allows organisms to use not even coherent light to vibration resistant and reconstruction of holograms even without laser sources of light. This is happening, When Biosystems, for example, plants, use biomorfogenza to natural sun light across the spectrum from UV- to IR range.

Vibration is determined by the amount of polarization-optical rotational ability and, Therefore, thickness of optically active environment of cell nuclei in the near area and thickness of optically active environment kvaziob″ektiva to work in the far zone „. Known, that the rotational ability of certain liquid crystal reaches 40000 degrees / mm, that when it is used in the holographic information laser transducer, the main component of the quantum biokomp′ûtera, just enough for wide use of this method by polarization-holographic broadcast of genetic and metabolic information and holographic control biological profiles. In the light of the proposed mathematical model, us justified, referred to above, liquid crystal cell model (continuum cores or) as biological quasi lens. It has created the first biogolografičeskuû installation, in fact a quantum analog biocomputers, that performs the following functions of the wave control biosistemoj real recipient:

  1. Reading with Biosystems/biostruktury, a donor, wave equivalent of genetic-metabolic data and/or trigger waveforms, that include appropriate programmes in the biological system-principal.
  2. Transfer with the help of specially designed and manufactured kvaziob″ektiva holographic dynamic polarization-modulation information from donor to recipient, in the far zone „.
  3. Address the introduction of its in biome-recipient.
  4. Strategic management of the recipient Biosystems metabolism.

These four functions we demonstrated in Russia (Moscow) in 2000., and then in Canada (Toronto) in 2002. These works we reiterated in an extended version (N-Novgorod) in 2007. [24]. After that we found and other biological phenomena (see. below), associated with the use of such technologies [29]. This line of research, originated in ISP RAS, not limited to practical use only the first model of quantum biokomp′ûtera. On the basis of the theory, the US previously [3,4,7-13,25,29] and developed in this work, thanks to the efforts of the, mainly, G.g. Tertyšnogo, You can believe, that will create a vast family of quantum biokomp′ûterov, who will use the entire range of coherent radiation from UV polarized probing- to IR ranges.

1. Soviet encyclopedic dictionary. Изд. „Soviet encyclopedia”, M. 1980. With. 322.
2. Garyaev P., Dmitri Tertyshny., Roslov Vn. Method of analysis of physical objects and device for its realization of the priority of an international application. №99 / 01 / L of 06.01.1999.
3. Garyaev P., Dmitri Tertyshny., Gotovskiy Yu.. The transformation of light into radio waves. III международная конференция «Теоретические и клинические аспекты применения адаптивной резонансной и мультирезонансной терапии». IMEDIS. Moscow. 1997, With. 303-313.
4. Garyaev P., Dmitri Tertyshny., Loŝilov V.i., Shcheglov V.a., Gotovskiy Yu.. The phenomenon of moving light in the radio waves in the biosistemam. Sat. scientific. трудов «Актуальные проблемы создания биотехнических систем». Вып. 2. МГТУ им. AD. Bauman. Academy Of Medico-Technical Sciences Of The Russian Federation. Moscow, 1997, With. 31-42..
5. Тертышный Г. Г. Методы и средства биофизического полевого управления в биологических системах. Sat. статей. Ладомир, M., 2005, With. 565-571.
6. Dmitri Tertyshny., Гетманов В. Г., Жужжалов В. Е.. Диагностическая измерительная система. Patent №2228518 of 14.10.2002.
7. Gariaev P.P., Tertishniy G.G., Kampf U., Muchamedjarov F. Fractal structure in DNA code and human language-towards a semiotics of biogenic information (IASS/AIS) Dresden, October 3-6, 1999, Р. 161.
8. Gariaev P.r Tertishniy G.G., The quantum nonlocality of genomes as a main factor of the morphogenesis of biosystems. Potsdam, Germany, Мay 6-9, 1999, P. 37-39.
9. Gariaev P.P., Tertishniy G.G., Birshtein B.I., Iarochenko A.M., Marcer P.J., Leonova K.A., Kaempf You. The DNA-Wave Biocomputation // Consciousness and physical reality, Vol. 2, No. 2, 2000, Pp. 26-33.
10. Garyaev P., Prangishvili I.v., Dmitri Tertyshny.,. Mologin A.v., Leonova E., Ernest E. R. The genetic structure of both the source and the holographic information receiver // Sensors and Systems, 2000, № 2, With. 2- 8.
11. Garyaev P., Prangishvili I.v., Dmitri Tertyshny., Vladimir Maksimenko, Mologin A.v., Leonova Ea, Ernest E. R. Spectroscopy of localized radiation photon-wave: Exit to the quantum nonlocal bioinformation processes // Sensors and Systems, 2000, № 9, With. 2-13.
12. Garyaev P., Shabelnikov A.. Dmitri Tertyshny., Range of human speech and DNA // Sensors and Systems, 2001, No. 12, With. 2-4.
13. Garyaev P., Prangishvili I.v., Dmitri Tertyshny., Mologin A.v., Leonova E., Ernest E. R. The three-dimensional model of the processes of endogenous development of the holographic control of the spatial structure of biological systems // Sensors and Systems, 2001, # 1, With. 3-8.
14 EA Baklanov, Uraev D.v., Johannes Theodor Schmalhausen.. Dynamics of polarization holographic recording in films of azo-containing polymers // Bulletin of Moscow University, 3 series, Physics. Astronomy, c. 20-26 (2005).
15. Soviet encyclopedic dictionary. Soviet encyclopedia, M. 1980. With. 442.
16. Method for guiding nerve cell growth with light could lead to treatment of spinal cord injuries. The University of Texas at Austin, UT Directory, UT Offices. News Home, November 25, 2002.
17. Денисюк Ю. Н. Displays the properties of the traveling wave intensity when recording dynamic volume holograms // Zh, 1974, 44, # 1, with. 131-136.
18. Прангишвили И. В. Системный подход и общесистемные закономерности», СИНТЕГ, M., 2000.
19. Stephen Ross, Richard Newton, Yu-Ming Zhou, Julian Haffegee, Mae-Wan Ho Quantitative Image Analysis of Birefringent Biological Material.Journal of Microscopy 187, p. 62-67, 1997.
20. Будаговский А. В. Дистанционное межклеточное взаимодействие. НПЛЦ «ТЕХНИКА», M., 2004, With. 103.
21. Gariaev P.P., Tertyshnii G.G., Aksenov V.A., Leonova E.A., Fomchenkov S.V., The formalism of endogenous polarization/holographic managing processes in organisms. Consciousness and a physical reality, 9, number 4, With. 44-50, 2004, In Russian.
22. Александров С. А. Некогерентный метод получения голограмм. // Optics and Spectroscopy. 1998, Т. 85, № 6, With. 1029-1032.
23. Du Praw, E.J. DNA and Chromosomes (Holt, Rinehart & Winston, New York, 1970.
24. Garyaev P., Kokaya A., Mukhina I., Leonova-Garyaeva E., Кокая Н. Г., The effect of biostructures modulated electromagnetic radiation on alloxan diabetes in rats.. Bulletin of experimental biology and medicine, # 2, с. 155-158 (2007).
25. Dmitri Tertyshny., Garyaev P., Aksenov V.a., Leonova E., Fomchenkov S.v., 2004, The formalism of endogenous polarization-holographic control processes in organisms. Journal of mind and physical reality „, т. 9, # 4, с. 44-50.
26. Peter P. Gariaev, Boris I. Birshtein, Alexander M. Iarochenko, Peter J. Marcer, George G. Tertishny, Katherine A. Leonova, Uwe Kaempf ., 2001, The DNA-wave biocomputer. «CASYS „– International Journal of Computing Anticipatory Systems (ed. D.M.Dubois), Liege, Belgium, v.10, pp.290-310.
27. Mae-Wan Ho., Dance of life,
28. Biophotonics and Coherent Systems. Proc., 2000, 2-nd A.Gurwitsch Conf. and Add. Contribution. Eds by L.Beloussov, F.A.Popp, V.Voeikov, R.van Wijk. Moscow State University Press.
29. Артюх В. Д., Garyaev P., Kokaya A., Leonova-Garyaeva E., Ernest E.r., Mukhina I., Smelov M.v., Товмаш А. В., Чалкин С. Ф., Шатров Я. К., Ягужинский Л. С., 2007, Эффект лазер индуцированной устойчивости животных к аллоксану.
30. Garyaev P., 1994, Wave gene. M. Изд. The common good. 279.
31. Garyaev P., Волновой генетический код., 1997, Моногр. M. Изд. The State Entreprise. 108 c.
32. Pribram, K.H.. Nuwer. M.. & Baron, R. The holographic hypothesis of memory structure in brain function and perception. In: R.C. Atkmson, D.H. Krantz, R.C. Luce & P. Suppes (Eds) Contemporary Developments in Mathematical Psychology. San Francisco: W.H. Freeman & Aol. 1974. pp 416-467.
33. A. M. Agal′cov, P.P.. Garyaev, IN THE.. Gorelik, AND A. Rakhmatullaev, VA. Shcheglov, 1996, Двухфотонно-возбуждаемая люминесценция в генетических структурах. Квантовая электроника, v.23, N2, с.181-184.
34. Y. Kawabe, (L). Wang, T. Nakamura, and N. Ogata Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes Applied Physics Letters — August 19, 2002 — Volume 81, Issue 8, pp. 1372-1374.
35. Dr. Peter P. Garyaev. Wave genetics.
36. Dmitri Tertyshny., Kutyin M.v., Čmutin A.m., Frolov, J. P.. Laser vibroizmeritel′nyj complex. M., Control devices and systems. M., 1993, # 10, s. 38-40.
37. Dmitri Tertyshny., Anuašvili A.n., N. Kabir. Theoretical basis of building security devices based on the background of the principle of. Reports of the Jubilee scientific and Technical Conference on 25-th anniversary of CNIIRÈS, Collection, Part 1-I, M.,1997, p. 182-184.
38. Dmitri Tertyshny., Гетманов В. Г., Kuznetsov Pa. The use of approximation algorithms in computer laser vibrometer // Measuring equipment, 1997, № 7, With. 34-37.
39. Dmitri Tertyshny., Гетманов В. Г., Kuznetsov Pa. Computer laser vibrometer. Tr. Intl. Seminar „vibration measurements in industry” NPO „spectr”, M., 1998, With. 237-243.
40. Тертышный Г. Г, Гетманов В. Г., Woodpeckers A.v., Fat MV,. The use of local and slajnovyh approximations for the estimation of non-stationary parameters of opto-electronic signals. f. Automatics and telemechanics, № 6, 2000, with. 29-35.